Unsupervised machine learning based on non-negative tensor factorization for analyzing reactive-mixing

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning to Recommend with Negative Ratings Based on Factorization Machine

Abstract—Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction al...

متن کامل

Non-Negative Tensor Factorization with RESCAL

Non-negative data is generated by a broad selection of applications today, e.g in gene expression analysis or imaging. Many factorization techniques have been extended to account for this natural constraint and have become very popular due to their decomposition into interpretable latent factors. Generally relational data like protein interaction networks or social network data can also be seen...

متن کامل

Controlling Sparseness in Non-negative Tensor Factorization

Non-negative tensor factorization (NTF) has recently been proposed as sparse and efficient image representation (Welling and Weber, Patt. Rec. Let., 2001). Until now, sparsity of the tensor factorization has been empirically observed in many cases, but there was no systematic way to control it. In this work, we show that a sparsity measure recently proposed for non-negative matrix factorization...

متن کامل

Topic Graph Based Non-negative Matrix Factorization for Transfer Learning

We propose a method called Topic Graph based NMF for Transfer Learning (TNT) based on Non-negative Matrix Factorization (NMF). Since NMF learns feature vectors to approximate the given data, the proposed approach tries to preserve the feature space which is spanned by the feature vectors to realize transfer learning. Based on the learned feature vectors in the source domain, a graph structure c...

متن کامل

A non-negative tensor factorization model for selectional preference induction

Distributional similarity methods have proven to be a valuable tool for the induction of semantic similarity. Up till now, most algorithms use two-way cooccurrence data to compute the meaning of words. Co-occurrence frequencies, however, need not be pairwise. One can easily imagine situations where it is desirable to investigate co-occurrence frequencies of three modes and beyond. This paper wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2019

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2019.05.039